UMM Logo

Universitas Muhammadiyah Malang


Free Download Journals Directory


International Journal Of Bilogical Sciences

.: Home > International Journal Of Bilogical Sciences > 2013 > Volume 9 Number 1 > Xiao-Qin Wu1,2✉, Wei-Min Yuan1,2, Xiao-Jing Tian1,2, Ben Fan1,2, Xin Fang1,2, Jian-Ren Ye1,2, Xiao-Lei Ding1,2

Specific and Functional Diversity of Endophytic Bacteria from Pine Wood Nematode Bursaphelenchus Xylophilus with Different Virulence

Xiao-Qin Wu1,2✉, Wei-Min Yuan1,2, Xiao-Jing Tian1,2, Ben Fan1,2, Xin Fang1,2, Jian-Ren Ye1,2, Xiao-Lei Ding1,2
1. Institute of Forest Protection, College of Forest Resources and Environment, Nanjing Forestry University, Nanjing, China, 2. Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China.
Abstract :

Pine wilt disease (PWD) caused by the pine wood nematode (PWN), Bursaphelenchus xylophilus, is one of the most devastating diseases of Pinus spp. The PWN was therefore listed as one of the most dangerous forest pests in China meriting quarantine. Virulence of the PWN is closely linked with the spread of PWD. However, main factors responsible for the virulence of PWNs are still unclear. Recently epiphytic bacteria carried by PWNs have drawn much attention. But little is known about the relationship between endophytic bacteria and virulence of B. xylophilus. In this research, virulence of ten strains of B. xylophilus from different geographical areas in six provinces of China and four pine species were tested with 2-year-old seedlings of Pinus thunbergii. Endophytic bacteria were isolated from PWNs with different virulence to investigate the relationship between the bacteria and PWN virulence. Meanwhile, the carbon metabolism of endophytic bacteria from highly and low virulent B. xylophilus was analyzed using Biolog plates (ECO). The results indicated that ten strains of PWNs showed a wide range of virulence. Simultaneously, endophytic bacteria were isolated from 90% of the B. xylophilus strains. The dominant endophytic bacteria in the nematodes were identified as species of Stenotrophomonas, Achromobacter, Ewingella, Leifsonia, Rhizobium, and Pseudomonas using molecular and biochemical methods. Moreover, S. maltophilia, and A. xylosoxidans subsp. xylosoxidans were the predominant strains. Most of the strains (80%) from P. massoniana contained either S. maltophilia, A. xylosoxidans, or both species. There was a difference between the abilities of the endophytic bacteria to utilize carbon sources. Endophytic bacteria from highly virulent B. xylophilus had a relatively high utilization rate of carbohydrate and carboxylic acids, while bacteria from low virulent B. xylophilus made better use of amino acids. In conclusion, endophytic bacteria widely exist in B. xylophilus from different pines and areas; and B. xylophilus strains with different virulence possessed various endophytic bacteria and diverse carbon metabolism which suggested that the endophytic bacteria species and carbon metabolism might be related with the B. xylophilus virulence.

Keywords :
pine wilt disease, Bursaphelenchus xylophilus, endophytic bacteria, virulence, Pinus massoniana, P. thunbergii.

Date Deposited : 09 Apr 2015 15:03

Last Modified : 09 Apr 2015 15:03

Official URL: http://www.ijbs.com/ms/archive

Volume 9, Number 1, - 2013 , ISSN 1545-1003

Download:
Full Text Original
Abstract : pdf doc
Home | Peta Situs | Admissions | Student Research | E-Journal
Universitas Muhammadiyah Malang © 2011
Developed by Infokom UMM
Last Update : 13 December 2016 20:46Kumpulan file jurnal