UMM Logo

Universitas Muhammadiyah Malang


Free Download Journals Directory


International Journal Of Bilogical Sciences

.: Home > International Journal Of Bilogical Sciences > 2013 > Volume 9 Number 7 > Xiao-Long Lu*1,4, Wen-Xiao Xu*2, Zhen-Yu Yan1, Zhao Qian1, Bing Xu1, Yang Liu3, Li-Min Han1, Rui-Chen Gao3, Jun-Nan Li1, Mei Yuan1, Chong-Bao Zhao3, Guo-fen Qiao1,3✉, Bai-Yan Li

Subtype Identification in Acutely Dissociated Rat Nodose Ganglion Neurons Based on Morphologic Parameters

Xiao-Long Lu*1,4, Wen-Xiao Xu*2, Zhen-Yu Yan1, Zhao Qian1, Bing Xu1, Yang Liu3, Li-Min Han1, Rui-Chen Gao3, Jun-Nan Li1, Mei Yuan1, Chong-Bao Zhao3, Guo-fen Qiao1,3✉, Bai-Yan Li
1. Department of Pharmacology, Harbin Medical University, Harbin, China 2. Department of Orthopedics, the First Affiliated Hospital, Harbin Medical University, Harbin, China 3. Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Harbin Medical University, Harbin, China 4. Riley Heart Research Center, Division of Pediatric Cardiology, Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, USA
Abstract :

Nodose ganglia are composed of A-, Ah- and C-type neurons. Despite their important roles in regulating visceral afferent function, including cardiovascular, pulmonary, and gastrointestinal homeostasis, information about subtype-specific expression, molecular identity, and function of individual ion transporting proteins is scarce. Although experiments utilizing the sliced ganglion preparation have provided valuable insights into the electrophysiological properties of nodose ganglion neuron subtypes, detailed characterization of their electrical phenotypes will require measurements in isolated cells. One major unresolved problem, however, is the difficulty to unambiguously identify the subtype of isolated nodose ganglion neurons without current-clamp recording, because the magnitude of conduction velocity in the corresponding afferent fiber, a reliable marker to discriminate subtypes in situ, can no longer be determined. Here, we present data supporting the notion that application of an algorithm regarding to microscopic structural characteristics, such as neuron shape evaluated by the ratio between shortest and longest axis, neuron surface characteristics, like membrane roughness, and axon attachment, enables specific and sensitive subtype identification of acutely dissociated rat nodose ganglion neurons, by which the accuracy of identification is further validated by electrophysiological markers and overall positive predictive rates is 89.26% (90.04%, 76.47%, and 98.21% for A-, Ah, and C-type, respectively). This approach should aid in gaining insight into the molecular correlates underlying phenotypic heterogeneity of nodose ganglia. Additionally, several critical points that help for neuron identification and afferent conduction calibration are also discussed.

Keywords :
visualization, visceral sensory neuron, conduction velocity, whole-cell patch, action potential

Date Deposited : 11 Apr 2015 10:29

Last Modified : 11 Apr 2015 10:29

Official URL: http://www.ijbs.com/ms/archive

Volume 9, Number 7, - 2013 , ISSN 1449-2288

Download:
Full Text Original
Abstract : pdf doc
Home | Peta Situs | Admissions | Student Research | E-Journal
Universitas Muhammadiyah Malang © 2011
Developed by Infokom UMM
Last Update : 13 December 2016 20:46Kumpulan file jurnal