UMM Logo

Universitas Muhammadiyah Malang


Free Download Journals Directory


International Journal Of Bilogical Sciences

.: Home > International Journal Of Bilogical Sciences > 2015 > Volume 11 Number 11 > Ruchi Mishra1, Deepak Bushan Raina1,2, Mea Pelkonen2, Lars Lidgren2, Magnus Tägil2, Ashok Kumar1,

Study of in Vitro and in Vivo Bone Formation in Composite Cryogels and the Influence of Electrical Stimulation

Ruchi Mishra1, Deepak Bushan Raina1,2, Mea Pelkonen2, Lars Lidgren2, Magnus Tägil2, Ashok Kumar1,
1. Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur-208016, UP, India 2. Department of Orthopedics, Clinical Sciences, Lund University, Lund-221 85, Sweden First two authors have equal contribution in this work. * Current affiliation- Department of Plastic Surgery, The Ohio State University, Columbus, Ohio-43210 Corresponding author: Ashok Kumar, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur- 208016, UP, India. E-mail: ashokkum@iitk.ac.in; Tel: +91-512-2594051; Fax: +91-512-2594010
Abstract :

This work studies osteoinduction and bone conduction in polyvinyl alcohol-tetraethylorthosilicate-alginate-calcium oxide (PTAC) biocomposite cryogels along with the synergistic effect of electrical stimulation. In vitro osteoinduction of C2C12 myoblast towards osteogenic lineage is demonstrated through alkaline phosphatase assay, scanning electron microscopy and energy dispersive X-ray spectroscopy. These results were followed by in vivo implantation studies of PTAC biocomposite cryogel scaffolds in the bone conduction chamber model depicting bone formation after 24 days based on immunohistological staining for osteogenic markers, i.e., collagen type I (Col I), osteocalcin (OCN), osteopontin (OPN) and bone sialoprotein (BSP). Further, osteogenic differentiation of murine mesenchymal stem cells was studied with and without electrical stimulation. The q-PCR analysis shows that the electrically stimulated cryogels exhibit ~ 6 folds higher collagen type I and ~ 10 folds higher osteopontin mRNA level, in comparison to the unstimulated cryogels. Thus, PTAC biocomposite cryogels present osteoinductive and osteoconductive properties during in vitro and in vivo studies and support osteogenic differentiation of mesenchymal stem cells under the influence of electrical stimulation

Keywords :
Cryogel, bone formation, osteoinduction, bone conduction chamber, electrical stimulation

Date Deposited : 08 Mar 2016 11:37

Last Modified : 08 Mar 2016 11:37

Official URL: http://www.ijbs.com/v11i11

Volume 11, Number 11, - 2015 , ISSN 1449-2288

Download:
Full Text Original
Abstract : pdf doc
Home | Peta Situs | Admissions | Student Research | E-Journal
Universitas Muhammadiyah Malang © 2011
Developed by Infokom UMM
Last Update : 13 December 2016 20:46Kumpulan file jurnal