UMM Logo

Universitas Muhammadiyah Malang


Free Download Journals Directory


International Journal Of Bilogical Sciences

.: Home > International Journal Of Bilogical Sciences > 2016 > Volume 12 Number 1 > Yulong Zhou, Hongyu Zhang, Binbin Zheng, Libing Ye, Sipin Zhu, Noah R Johnson, Zhouguang Wang, Xiaojie Wei, Daqing Chen, Guodong Cao, Xiaobing Fu, Xiaokun Li, Hua-Zi Xu, Jian Xiao

Retinoic Acid Induced-Autophagic Flux Inhibits ER-Stress Dependent Apoptosis and Prevents Disruption of Blood-Spinal Cord Barrier after Spinal Cord Injury

Yulong Zhou, Hongyu Zhang, Binbin Zheng, Libing Ye, Sipin Zhu, Noah R Johnson, Zhouguang Wang, Xiaojie Wei, Daqing Chen, Guodong Cao, Xiaobing Fu, Xiaokun Li, Hua-Zi Xu, Jian Xiao
1. Department of Orthopaedics, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325035 China 2. Molecular Pharmacology Research Center, School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang, 325035 China 3. Department of Bioengineering and the McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA 4. Department of Neurosurgery, Cixi People’s Hospital, Wenzhou Medical University, Ningbo, 315300, China 5. Department of Emergency, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China 6. Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA. 7. Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing 100853, China The first two authors contributed equally to this study.  Corresponding author: Jian Xiao, School of Pharmacy, Wenzhou Medical University, Wenzhou 325035, Zhejiang 325035, PR China. Tel.:+86-577-85773087; Fax.: +86-577-85773087; E-mail: xfxj2000@126.com. Hua-Zi Xu, Department of Orthopaedics, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, PR China. Tel.: +86-577-88816381; Fax.: +86-577-88816381; E-mail: spinexu@163.com
Abstract :

Spinal cord injury (SCI) induces the disruption of the blood-spinal cord barrier (BSCB) which leads to infiltration of blood cells, an inflammatory response, and neuronal cell death, resulting spinal cord secondary damage. Retinoic acid (RA) has a neuroprotective effect in both ischemic brain injury and SCI, however the relationship between BSCB disruption and RA in SCI is still unclear. In this study, we demonstrated that autophagy and ER stress are involved in the protective effect of RA on the BSCB. RA attenuated BSCB permeability and decreased the loss of tight junction (TJ) molecules such as P120, β-catenin, Occludin and Claudin5 after injury in vivo as well as in Brain Microvascular Endothelial Cells (BMECs). Moreover, RA administration improved functional recovery in the rat model of SCI. RA inhibited the expression of CHOP and caspase-12 by induction of autophagic flux. However, RA had no significant effect on protein expression of GRP78 and PDI. Furthermore, combining RA with the autophagy inhibitor chloroquine (CQ) partially abolished its protective effect on the BSCB via exacerbated ER stress and subsequent loss of tight junctions. Taken together, the neuroprotective role of RA in recovery from SCI is related to prevention of of BSCB disruption via the activation of autophagic flux and the inhibition of ER stress-induced cell apoptosis. These findings lay the groundwork for future translational studies of RA for CNS diseases, especially those related to BSCB disruption.

Keywords :
blood-spinal cord barrier (BSCB), retinoic acid (RA), autophagy, endocytoplasmic reticulum (ER) stress, spinal cord injury (SCI)

Date Deposited : 15 Mar 2016 10:29

Last Modified : 15 Mar 2016 10:29

Official URL: http://www.ijbs.com/v12i1

Volume 12, Number 1, - 2016 , ISSN 1449-2288

Download:
Full Text Original
Abstract : pdf doc