A relationship between *DGAT1 K232A* polymorphism and selected reproductive traits in Polish Holstein-Friesian cattle

Jolanta Komisarek*, Arkadiusz Michalak

Department of Cattle Breeding and Milk Production, The August Cieszkowski Agricultural University of Poznań, Wojska Polskiego 71 A, 60-625 Poznań, Poland

(Received February 9, 2008; accepted March 19, 2008)

The aim of the study was to analyse the relationship between *DGAT1 K232A* polymorphism and bulls' breeding value for five reproductive traits – age at first insemination, calving-to-conception interval, calving-to-first service interval, non-return rate in heifers, and non-return rate in cows. The investigation was conducted on 264 Polish Black-and-White (Polish Holstein-Friesian) bulls from the active dairy population. *DGAT1* genotypes were identified using the PCR-RFLP technique. The K and A allele frequencies were 0.38 and 0.62, respectively. Homozygotes AA were characterized by highest breeding values of non-return rates, both in heifers and in cows. On the contrary, for the age at first insemination and for calving-to-conception and calving-to-first service intervals, the most favourable seemed to be the KK genotype. However, the significant effect of AA (P ≤ 0.01) was obtained only for non-return rate in cows.

KEY WORDS: breeding value /cattle / *DGAT1* / gene polymorphism / non-return rate / reproductive traits

Declined reproduction efficiency related to the high milk production became a worldwide problem in dairy cattle breeding. High-yielding cows in early lactation require more energy than is available from their diet. This leads to the negative energy balance (NEB) which, in turn, negatively influences ovarian activity and largely determines the length of calving-to-first ovulation interval and the probability of subsequent conception [Butler 2003, Reist *et al.* 2003]. Several strategies can...
be applied to alleviate the NEB in early postpartum period and thus to decrease the risk of reproductive failures. The traditional approach includes increasing dietary energy concentration through the partial substitution of forages with concentrates or fat supplements. This is, however, associated with possible negative effects such as acidosis or reduced dry matter intake. An alternative approach is to decrease the calorific demand of milk production. As fat is the most energetically expensive to synthesize component of milk, reduction of its yield and content of milk may influence the severity and duration of NEB in high-producing dairy cows. Fat is the most variable among the major milk components and its synthesis is affected by many environmental and genetic factors.

The present study aimed at analysing the relationship between DGAT1 K232A polymorphism and breeding value of bulls of selected reproductive traits in cattle.

Material and methods

The study included 264 Polish Black-and White (Polish Holstein-Friesian) bulls from the active dairy population, born from 1996 to 2001.

DNA for molecular analyses was extracted from peripheral blood or semen using the standard phenol method. Genotypes were determined using the PCR-RFLP technique. Primers for the PCR were established from DGAT1 gene sequence available in the GenBank database (accession number AY065621) with the use of Primer3 software (http://frodo.wi.mit.edu/cgi-bin/primer3/primer3.cgi):

F: 5’- TGCCGCTTTGCTCGTAGCTTTGGCC* -3,
R: 5’- ACCTGGAGCTGGGTGAGGAACAGC -3’.

In the forward primer, the restriction site for enzyme BglII was introduced through purposeful unpairing of one base (marked with an asterisk). PCR amplification was performed in a TGradient thermocycler (BIOMETRA, Germany). The reaction mixture contained in 10 μl a total of 20-50 ng genomic DNA, 0.5 units of Taq polymerase (FERMENTAS, Lithuania), 1×PCR buffer with (NH₄)₂SO₄, 2 mM MgCl₂, 7% dimethyl sulfoxide, 1 μM of each primer (Institute of Biochemistry and Biophysics, Polish Academy of Sciences) and 200 μM of each dNTP (FERMENTAS, Lithuania). Reaction conditions included initial denaturation at 94°C (5 min) followed by 30 cycles.
DGAT1 K232A polymorphism and reproductive traits in cattle

consisting of denaturation (94°C, 30 s), annealing (58.5°C, 30 s), synthesis (72°C, 35 s), and final synthesis (72°C, 5 min). Amplified fragments were digested overnight at 37°C using 5 units of the BglII restriction endonuclease (FERMENTAS, Lithuania). Digestion products were subjected to electrophoresis in 3% ethidium bromide-stained agarose gel (BASICA GQT, Prona, Spain).

Effects of DGAT1 genotypes on bulls’ breeding values (EBV) were tested by one-way ANOVA [SAS 1999] for five following reproductive traits:

– age at first insemination – AFI;
– calving-to-conception interval after first calving – CCI;
– calving-to-first service interval after first calving – CFI;
– non-return rate to 56 days after first insemination in heifers – NRRH;
– non-return rate to 56 days after first insemination in cows – NRRC.

Used were the breeding values estimated (EBV) on the national scale in 2007 (http://wycena.izoo.krakow.pl/). The higher breeding values for AFI, CCI and CFI may be interpreted as indicative of decreased age at first insemination of daughters, and shorter intervals from first calving-to-conception and from first calving-to-first service in daughters, respectively. The higher breeding values for NRRH and NRRC indicate the increased per cent of daughters which have become pregnant after first insemination.

Results and discussion

The PCR reactions resulted in 378 bp-long products. After digestion with the BglII restriction enzyme the alanine encoding allele (A) was cleaved into three fragments – of 254 bp, 96 bp and 28 bp – while lysine encoding allele (K) was visible in gel as two bands – of 282 bp and 96 bp. Among the 264 bulls examined, 40 KK, 120 KA and 104 AA genotypes were identified. This gives frequencies of 0.38 and 0.62 for K and A alleles, respectively. Earlier, the lysine encoding variant frequency in Holstein-Friesian cattle was reported to range from 0.37 [Gautier et al. 2007], through 0.55 [Thaller et al. 2003, Kaupe et al. 2007] and 0.61 [Sanders et al. 2006] to 0.70 [Grisart et al. 2002].

In this study the observed genotypes distribution deviated from the Hardy-Weinberg equilibrium ($\chi^2=6.51$, P<0.05), with excess of KA heterozygotes mainly at the expense of homozygotes AA. The excess of heterozygotes compared with their expected distribution may indicate the presence of overdominant selection. On the other hand, however, it may also result from a small number of animals in the analysed sample.

Several studies confirmed that DGAT1 K232A polymorphism is responsible for variation in milk-related traits in cattle. The lysine-encoding variant is generally related to markedly elevated fat content and a less distinctively elevated protein content, while its impact on both milk and protein yield is negative. In spite its relation with the lower milk yield, K allele is positively associated with fat yield [Grisart et
al. 2002, Winter et al. 2002, Thaller et al. 2003, Gautier et al. 2007, Sanders et al. 2006]. A pronounced influence of DGAT1 on milk-related traits, especially on milk fat yield, has been reported in many cattle populations, including the Jersey [Spelman et al. 2002], Fleckvieh [Thaller et al. 2003], Normande [Gautier et al. 2007] and Angeln [Sanders et al. 2006] breeds, as well as German [Thaller et al. 2003], Dutch [Grisart et al. 2002], French [Gautier et al. 2007], Polish [Szyda and Komisarek 2007], and New Zealand [Grisart et al. 2002] Holstein-Friesians. Additionally, Grisart et al. [2004] provided the functional confirmation of the K232A mutation effect on DGAT1 enzymatic activity. They demonstrated in vitro a significantly higher efficiency in triglyceride synthesis of the enzyme variant including lysine compared to the variant with alanine.

In this report, an effect of DGAT1 gene polymorphism was analysed on five fertility traits of cattle. The results are presented in Table 1. Bulls homozygous for the A allele, that is regarded as variant decreasing fat and energy content of milk, were characterized by a highest breeding values for non-return rates, both in heifers and in cows. On the contrary, for the AFI, CCI and CFI, the most favourable seemed to be the KK genotype. However, the significant effect was identified only for NRRC. Although the effect of DGAT1 on fertility traits was not intensively examined so far, observations of Kaupe et al. [2007] also indicate the possible relationship between an alanine encoding variant and increased non-return rate in cattle.

Table 1. Means and their standard deviations (SD) for estimated breeding values (EBV) of selected reproductive traits in Polish Black-and-White (Polish Holstein-Friesian) bulls

<table>
<thead>
<tr>
<th>Reproductive trait</th>
<th>DGAT1 genotype</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>KK (n=40)</td>
<td>KA (n=120)</td>
<td>AA (n=104)</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>AFI</td>
<td>mean</td>
<td>105.00</td>
<td>104.25</td>
<td>103.52</td>
<td>0.5509</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>8.95</td>
<td>9.41</td>
<td>11.66</td>
<td></td>
</tr>
<tr>
<td>CCI</td>
<td>mean</td>
<td>96.65</td>
<td>95.47</td>
<td>95.95</td>
<td>0.7466</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>7.63</td>
<td>8.76</td>
<td>8.83</td>
<td></td>
</tr>
<tr>
<td>CFI</td>
<td>mean</td>
<td>97.19</td>
<td>95.26</td>
<td>96.76</td>
<td>0.4471</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>7.75</td>
<td>11.97</td>
<td>8.84</td>
<td></td>
</tr>
<tr>
<td>NRRH</td>
<td>mean</td>
<td>98.96</td>
<td>100.62</td>
<td>102.03</td>
<td>0.1196</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>10.34</td>
<td>11.57</td>
<td>11.15</td>
<td></td>
</tr>
<tr>
<td>NRRC</td>
<td>mean</td>
<td>94.11^a</td>
<td>95.49^b</td>
<td>98.72^a</td>
<td>0.0097</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>10.17</td>
<td>10.21</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

n – number of bulls.
AFI – age at first insemination; CCI – calving-to-conception interval; CFI – calving-to-first service interval; NRRH – non-return rate to day 56 after first insemination in heifers; NRRC – non-return rate to day 56 after first insemination in cows.

^Within rows means bearing the same superscript differ significantly at: small letters – P≤0.05; capitals – P≤0.01.
The mechanism underlying the positive influence of the A allele on non-return rate could be similar to the effect of administration of a dietary conjugated linoleic acid (CLA) to cows. Trans-10 cis-12 and several other CLA isomers inhibit the mammary lipid synthesis [Liu et al. 2006, Perfield et al. 2007]. Supplementing the diet with CLA promotes the milk fat depression and may improve the overall energy balance in the early lactation [Kay et al. 2007, Odens et al. 2007]. Although the positive effect of CLA on reproductive traits in cattle has not been confirmed, Bernal-Santos et al. [2003] and Castañeda-Gutiérrez et al. [2005] observed a tendency of shortening the calving-to-first ovulation interval and increasing the pregnancy rate in CLA-administered cows.

The $DGAT1$ K232A mutation could affect fertility in a similar way. It is well established that NEB in the postpartum period, probably acting through the combined signaling of various metabolites and hormones, including glucose, IGF-I, insulin and nonesterified fatty acids, reduces the pulsative pituitary gonadotropin release necessary for the development of ovarian follicles and oocytes [Gong et al. 2002, Leroy et al. 2005, 2006]. Thus, as a consequence of lower energy expenditure in a K232A-AA cows producing less fat in milk, the NEB severity could be reduced and ovulation rate increased. Effect of $DGAT1$ polymorphism on reproductive traits in dairy cattle should be, however, confirmed in the further investigations.

REFERENCES

DGAT1 K232A polymorphism and reproductive traits in cattle

Zależność między polimorfizmem DGAT1 K232A a wybranymi cechami reprodukcyjnymi bydła rasy polskiej holsztyńsko-fryzyjskiej

Streszczenie

Celem pracy była analiza zależności między polimorfizmem DGAT1 K232A a wartością hodowlaną buhajów pod względem pięciu cech reprodukcyjnych – wieku pierwszego unosienia, okresu międzyciążowego, okresu od ocielenia do pierwszego unosienia, wskaźnika niepowtarzalności unosienia jałówek oraz wskaźnika niepowtarzalności unosienia krów. Badaniem objęto 264 buhaje rasy polskiej holsztyńsko-fryzyjskiej z aktywnej populacji bydła mlecznego. Genotypy DGAT1 identyfikowano metodą PCR-RFLP. Frekwencje alleli K i A wynosiły odpowiednio 0,38 i 0,62. Zwierzęta homozygotyczne pod względem allelu A charakteryzowały się najwyższą wartością hodowlaną wskaźnika niepowtarzalności unosienia, zarówno jałówek, jak i krów. Natomiast pod względem wieku pierwszego unosienia i okresów międzyciążowych oraz okresów od ocielenia do pierwszego unosienia najkorzystniejszy okazał się genotyp KK. Statystycznie istotny (P≤0,01) wpływ genotypu AA udowodniono jednak tylko dla wskaźnika niepowtarzalności unosienia krów.