Effect of Organic Acids on Salmonella Typhimurium Infection in Broiler Chickens

A. Menconi¹, A.R. Reginatto², A. Londero², N.R. Pumford¹, M. Morgan¹, B.M. Hargis¹ and G. Tellez¹
¹Department of Poultry Science, University of Arkansas, Fayetteville AR 72701, USA
²Depto. de Medicina Veterinária - CCR Universidade Federal de Santa Maria, Brazil

Abstract: An alternative to antibiotics is the use of certain organic acids for routinely encountered pathogens in the poultry industry. Direct acidification of drinking water with organic acids could significantly reduce the amount of recoverable Salmonella Typhimurium (ST) from the crop and cecal tonsils when used during the pre-slaughter feed withdrawal period. In the present study, in vitro and in vivo evaluations were conducted to compare a commercially available water acidifier (Optimizer®), versus two formulations of organic acid mix (OAM), made up of of acetic, citric and propionic acids at a final concentration of either 0.031% or 0.062%, to reduce Salmonella Typhimurium in the crop and cecal tonsils of broiler chicks during a 24 h period. The two OAM showed better in vitro activity to reduce Salmonella when compared to control. In vivo, the OAM (0.062%) had a similar effect as Optimizer® showing a significant reduction in total number of ST positive cecal tonsils, and reducing the number of ST in the crop when compared with controls (P < 0.05). All treatments reduced the number of ST recovered from crop contents at 24 h. This new formulation of OAM has great potential as a crop sanitizer and will be further evaluated under conditions similar to commercial chickens.

Key words: Salmonella, organic acid, chickens

INTRODUCTION
Salmonella enterica causes an estimated 1.4 million cases of foodborne illnesses annually in the United States, resulting in over 15,000 hospitalizations (Voetsch et al., 2004a,b). Poultry and poultry products have been identified by some researchers as the most important source of transmission of Salmonella to the human population (Lynch et al., 2006). Increased pressure by consumers and regulatory agencies for reduced or even elimination of the use of antibiotics in food producing animals has created a need to find alternatives to maintain healthy and productive animals. These pressures are a challenge for the poultry industry for controlling Salmonella not only at the farm level, but also within processing and manufacturing plants (Hargis et al., 1995; Corrier et al., 1999a; Hinton et al., 2000; Mikolajczyk and Radkowski, 2002). An alternative to antibiotics is the use of certain organic acids. Direct acidification of the water with organic acids could significantly reduce the amount of recoverable Salmonella on the carcasses or in the crops and cecal tonsils when used during the pre-slaughter feed withdrawal period (Van Immerseel et al., 2006; Alali et al., 2010; Vandeplas et al., 2010); however, previous research has suggested that administration of OA during the pre-slaughter feed withdrawal period could lead to carcass shrinkage (Byrd et al., 2001). While this evidence was shown when using lactic acid alone, Optimizer® was developed as a combination of organic acids used in combination at low individual concentrations so that water consumption was not discouraged (Jarquin et al., 2007; Wolfenden et al., 2007; Vicente et al., 2007a,b,c). Organic acids are a readily available energy source for both the chicken and the bacteria. Therefore, it is important that the organic acids be administered in high enough concentrations to be bactericidal in the presence of organic matter, and low enough to be voluntarily consumed by the birds. In the present study, we compared a commercially available water acidifier (Optimizer®), Pacific Vet Group, Fayetteville, AR 72703, versus a new formulation of organic acid mix (OAM) to reduce Salmonella Typhimurium in the crop and cecal tonsils of broiler chicks.

MATERIALS AND METHODS
Salmonella amplification: A primary poultry isolate of Salmonella Typhimurium (ST) was used in these experiments. This isolate was selected for resistance to nalidixic acid (NA)². For these experiments, ST was grown in tryptic soy broth (TSB)² for approximately 8 h. The cells were washed three times with 0.9 % sterile saline by centrifugation (3,000 x g), and the approximate concentration of the stock solution was determined spectrophotometrically at 625 nm. The stock solution was serially diluted and confirmed by colony counts of three replicate samples (0.1 mL/replicate) that were spread plated on brilliant green agar (BGA)³ plates containing 25 μg/mL novobiocin (NO)² and 20 μg/mL nalidixic acid (NA). The colony-forming units of
Salmonella determined by spread plating were reported as the concentration of Salmonella (in cfu/mL) for in vitro experiments and total colony-forming units for in vivo challenge experiments.

Experimental Design - in vitro crop assay: An assay previously described (Barnhart et al., 1999) was used with modifications. Briefly, 1.25g of unmedicated chick starter feed was measured into 13x100 mm borosilicate tubes and autoclaved. The feed was suspended in 4.5 mL sterile saline and inoculated with 0.5 mL of a Salmonella Typhimurium culture containing approximately 10^8 cfu/mL. The tubes were treated with either: 1) saline as a control; 2) OAM, having a final concentration of acetic, citric and propionic acids at 0.031 % or; 3) OAM, having a final concentration of acetic, citric and propionic acids at 0.062 %. Each sample was run as triplicate, each treatment had 5 replicates, and the entire assay was repeated in 2 additional trials. After administering the treatment, the tubes were vortexed and incubated at 37°C for 30 minutes and an additional 6 h. The tubes were then agitated and 20 µL of the content was serially diluted and plated as triplicates on BGA containing novobiocin and nalidixic acid. Typical ST colonies were counted after 24 h of incubation.

Experimental design with chickens: In experiment 1, 64 day-of-hatch broiler chicks were obtained from a local hatchery. Chicks were randomized and challenged with 2 x 10^6 cfu/mL of ST. The chicks were then held in chick boxes for 1 h and then randomly assigned to 1) untreated control or continuous treatment in the drinking water with: 2) Optimizer® at commercial recommended doses; 3) OAM, having a final concentration of acetic, citric and propionic acids at 0.031 % or; 4) OAM, having a final concentration of acetic, citric and propionic acids at 0.062 %. Chicks were housed in brooder batteries with food and water ad libitum. At 24 hr post-challenge, chicks were humanely killed by CO₂ inhalation and crops were aseptically harvested, weighed and were homogenized within sterile sample bags using a rubber mallet. Sterile saline (4X weight to volume) was added to each sample bag and hand stomached with the crop contents. Dilutions were spread plated on BGA plates containing 25 µg/mL NO and 20 µg/mL NA. The plates were incubated at 37°C for 24 h and cfu of ST per crop were determined.

In experiment 2, 80 day-of-hatch broiler chicks were obtained from a local hatchery. Chicks were randomized and challenged with 2 x 10^6 cfu/mL of ST. The chicks were then held in chick boxes for 1 h and then randomly assigned to 1) untreated control or continuous treatment in the drinking water with: 2) Optimizer® at commercial recommended doses; 3) OAM, having a final concentration of acetic, citric and propionic acids at 0.031 % or; 4) OAM, having a final concentration of acetic, citric and propionic acids at 0.062 %. Chicks were housed in brooder batteries with food and water ad libitum. At 24 hr post-challenge, chicks were humanely killed by CO₂ inhalation and crops were aseptically harvested, weighed and were homogenized within sterile sample bags using a rubber mallet. Sterile saline (4X weight to volume) was added to each sample bag and hand stomached with the crop contents. Dilutions were spread plated on BGA plates containing 25 µg/mL NO and 20 µg/mL NA. The plates were incubated at 37°C for 24 h and examined for the presence or absence of the antibiotic resistant ST.

Statistical analysis: The incidence of Salmonella recovery within experiments was compared using the chi-square test of independence (Zar, 1984) testing all possible combinations to determine significant (P<0.05) differences between control and treated groups. Cecal cfu data were converted to log10 cfu numbers and then compared using the GLM procedure of SAS (SAS Institute, 2002) with significance reported at P < 0.05.

RESULTS AND DISCUSSION

Salmonella colonization of poultry flocks can occur via horizontal transmission (Bailey et al., 2002; Kim et al., 2007; Alali et al., 2010; Vandeplas et al., 2010). Once cecal tonsil colonization is established, the bacterium is consistently shed in the feces (Bailey et al., 2002; Foley et al., 2008). Feed Withdrawal induces pecking of the contaminated litter which may contaminate the crop (Corrier et al., 1999c) and if the crop is ruptured during processing, Salmonella may contaminate raw poultry products (Corrier et al., 1999b). Because the crop is more likely to rupture than the ceca, the crop represents an important source of Salmonella contamination to carcasses (Hargis et al., 1995; Corrier et al., 1999a). Table 1 summarizes the results of effect of OAM on ST in an in vitro crop assay. In 3 independent trials, the 0.031% OAM reduced ST by 6 h and the 0.062% OAM was also efficacious. However, when 0.062 % OAM was tested in chickens, it had a similar effect as Optimizer® showing a significant reduction in total number of ST.
Table 1: Effect of organic acid mix (OAM) on Salmonella Typhimurium (ST) in an in vitro crop assay

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Crop enrichment</th>
<th>Cecal tonsils</th>
<th>Log$_{10}$ ST/gram of crop content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control ST</td>
<td>20/20 (100%)</td>
<td>5.21 ± 0.31a</td>
<td></td>
</tr>
<tr>
<td>Optimizer a</td>
<td>18/20 (90%)</td>
<td>3.73 ± 0.25a</td>
<td></td>
</tr>
<tr>
<td>0.031% OAM</td>
<td>20/20 (100%)</td>
<td>3.96 ± 0.37b</td>
<td></td>
</tr>
<tr>
<td>0.062% OAM</td>
<td>18/20 (90%)</td>
<td>3.89 ± 0.22b</td>
<td></td>
</tr>
</tbody>
</table>

Organic acids mix = acetic, citric, and propionic acid. Data of enrichment culture is expressed as positive/total chickens for each tissue sampled (%). a Indicates significant difference at P < 0.05. b Indicates significant difference at P < 0.001. Log$_{10}$ ST/gram of crop content is expressed as mean ± standard error. Values within columns with different lowercase superscripts differ significantly (P < 0.05).

Table 2: Experiment 1, effect of Optimizer® or organic acids mix (OAM) on Salmonella Typhimurium (ST) in broiler chicks during 24 hours period

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Crop</th>
<th>Cecal tonsils</th>
<th>Log$_{10}$ ST/gram of ceca</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control ST</td>
<td>15/16 (94%)</td>
<td>14/16 (87%)</td>
<td>2.43 ± 0.35a</td>
</tr>
<tr>
<td>Optimizer a</td>
<td>13/16 (81%)</td>
<td>3/16 (19%)</td>
<td>0.22 ± 0.22</td>
</tr>
<tr>
<td>0.031% OAM</td>
<td>16/16 (100%)</td>
<td>12/16 (75%)</td>
<td>2.02 ± 0.35a</td>
</tr>
<tr>
<td>0.062% OAM</td>
<td>8/16 (50%)</td>
<td>1/16 (6%)</td>
<td>1.34 ± 0.40 a</td>
</tr>
</tbody>
</table>

Organic acids mix = acetic, citric, and propionic acid. Data of enrichment culture is expressed as positive/total chickens for each tissue sample (%). a Indicates significant difference at P < 0.05. Log$_{10}$ ST/gram of ceca content is expressed as mean ± standard error. Values within columns with different lowercase superscripts differ significantly (P < 0.05).

Table 3: Experiment 2, effect of Optimizer® or organic acids mix (OAM) on Salmonella Typhimurium (ST) in broiler chicks during 24 hours period

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Crop</th>
<th>Log$_{10}$ ST/gram of crop content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control ST</td>
<td>20/20 (100%)</td>
<td>5.21 ± 0.31a</td>
</tr>
<tr>
<td>Optimizer a</td>
<td>18/20 (90%)</td>
<td>3.73 ± 0.25a</td>
</tr>
<tr>
<td>0.031% OAM</td>
<td>20/20 (100%)</td>
<td>3.96 ± 0.37b</td>
</tr>
<tr>
<td>0.062% OAM</td>
<td>18/20 (90%)</td>
<td>3.89 ± 0.22b</td>
</tr>
</tbody>
</table>

Organic acids mix = acetic, citric, and propionic acid. Data of enrichment culture is expressed as positive/total chickens for each tissue sample (%). Log$_{10}$ ST / gram of crop content is expressed as mean ± standard error. Values within columns with different lowercase superscripts differ significantly (P < 0.05).

In the present study, Optimizer® reduced ST colonization in both crop and ceca (Tables 2 and 3) as has been previously reported (Jarquin et al., 2007; Wolfenden et al., 2007). In experiment 1, treatment with OAM in the drinking water caused a significant reduction (P < 0.05) in ST recovery from cecal tonsils when compared with the controls (OA treated = 19% vs. controls = 87%). Also, treatment with OAM reduced 2.21 logs of ST when compared with controls (Table 2). While any of the treatments reduced recovery of ST from the crop by enrichment, all treatments reduced the number of ST recovered from crop content at 24 h (Table 3). The organic acids used in this study (citric, acetic and propionic) as well as others have been shown to be individually effective in reducing Salmonella in vitro (Van Immerseel et al., 2006). The biocidal efficacy and the effect on virulence of Salmonella differ with each organic acid treatment and each organic acid has a unique effect on bacteria normally present in the crop and gastrointestinal tract (Furuse et al., 1991; Byrd et al., 2001; Castro Gonzalez et al., 2001; Kubena et al., 2001). Characteristics of organic acids such as chain length, side chain composition, pKa values and hydrophobicity could be factors that effect biocidal activity (Van Immerseel et al., 2006). For these reasons, a mixture of organic acids was tested to reduce ST crop contamination. Further studies are being conducted to evaluate these new formulations of OAM during the pre-slaughter feed withdrawal period in commercial chickens to evaluate water consumption and bactericidal activity against Salmonella in the crop.

REFERENCES

