Multi-Enzyme Supplementation to Peak Producing Hens Fed Corn-Soybean Meal Based Diets

M.A. Yörük¹, M. Gül¹, A. Hayirli* and M. Karaoglu²
¹Department of Animal Nutrition and Nutritional Disorders, Faculty of Veterinary Medicine, Atatürk University, Erzurum 25240, Turkey
²Department of Animal Sciences, Faculty of Agriculture, Atatürk University, Erzurum 25240, Turkey

Abstract: This experiment was conducted to evaluate the effects of multi-enzyme supplementation on laying performance, metabolic profile and egg quality of peak producing hens. Lohman layers (n = 144) were blocked according to the location of cages. After one week of the adaptation period, hens were randomly assigned to receive one of three corn-soybean meal based diets supplemented with multi-enzyme (0, 1, or 2 g/kg) from 30 to 46 weeks of age as 12 replicate cages of 4 hens. The active ingredients of the multi-enzyme supplement were fungal xylanase, fungal $-\text{gluconase}$, "$-\text{amylase}$, pectinase, $-\text{gluconase}$, endo-$-\text{gluconase}$, pentosonase, pectinase and hemicellulase. Egg production (EP) and feed intake (FI) were measured daily and egg weight was measured fortnightly. Feed conversion ratio (FCR) was expressed as kilogram of feed consumed per kilogram of egg produced. Two eggs were collected randomly from each cage every 4 weeks to determine egg quality. Body weights (BW) were measured at the beginning and end of the experiment. Blood was also sampled at the end of the experiment to evaluate metabolic profile. The data were analyzed using ANOVA as repeated measures with time being as subplot. The multi-enzyme supplementation did not affect BW, FI and EP; decreased FI; and improved FCR. Except for serum albumin and yolk index, none of metabolic profile and egg quality parameters was affected by the dietary treatments. In conclusion, despite no changes in egg production, decreased feed intake and consequently, improved feed conversion in response to multi-enzyme supplementation could be attributed to enhanced utilization of nutrients.

Key words: Multi-enzyme, corn-soybean meal based diet, laying performance, metabolic profile, egg quality

Introduction
In poultry operations, feed cost has always been one of the major issues. Enzyme supplementation as a feed additive has become common since last four decades (Chesson, 1993; Jensen et al., 1957). Moreover, their usage is especially common in European countries due to primarily their positive effects on animal performance as well as their lacking harmful effects on consumers (Dierck, 1989). Enzymes are a group of protein molecules with unique ability to catalyze biochemical reactions. Cereals are major constituents of poultry diets. Replacement of barley and oats with corn reduces feed cost in especially broiler operations. However, the presence of undegradable and complex carbohydrates and the low actual energy utilization limits their widespread use in broiler feeds. They are known as non-starch polysaccharides (NPS) and exert antinutritional properties (Nunes and Malmlof, 1992; Rainbird et al., 1984). Thus, enzymes are supplemented to improve nutritive value through hydrolyzing the mixed-linked $-\text{glucan}$ of endosperm walls of barley and oats and arabinoxylan of endosperm wall of rye (Broz and Frigg, 1986; Elwinger and Saterby, 1987). Chickens are not capable of hydrolyzing NPS’s that mask protein and carbohydrate (Pettersson and Åman, 1989). Non-starch polysaccharides cause an increase in viscosity of digesta and in intestinal tension, which impair diffusions of nutrients and reduce availability of nutrients for digestion and absorption due to sticky droppings and consequently, result in decreased energy value of feedstuff and worsened feed conversion (Annison, 1992; Bedford and Classed, 1992; Choc and Annison, 1992a). Thus, destruction of gel-forming NPS leached from cereal wall resulting from enzyme supplementation is of great importance for poultry species that have a short passage rate (Yu et al., 1998). Because of the presence of soluble glucan and arabinoxylan in endosperm wall, corn and wheat are unresponsive to enzyme supplementation (Veldman and Vahl, 1994). Legume seeds also contain NPS’s such as hemicelluloses, mannan, stachyose and raffinose, "$-\text{galactosides}$ of sucrose up to 27% of total NPS (Chesson, 1987; Irish et al., 1995). Chickens have no galactosidase activity, thus corn-soybean based diets...
Aims: The aim of this study was to evaluate the effects of enzymes on laying performance, metabolic profile and egg quality of laying hens fed diets containing cereal grains. The experimental diets (Table 1) were formulated to be isocaloric and isonitrogenous and met the NRC nutrient recommendations (NRC, 1994). The enzyme supplement contained fungal xylanase, fungal β-glucanase, α-amylase, pectinase, β-glucanase, endo-β-glucanase, pentosanase, pectinase and hemicellulase and it was added into the experimental diets at the expense of wheat bran. The diets contained an average of 89.8% dry matter and 2787 kcal/kg metabolizable energy, 17.9% crude protein, 3.3% crude fiber, 12.6% ash, 3.46% Ca and 0.61% P.

During the experimental period (from week 30 to 46), hens were fed ad libitum once daily at 08:30 hours and water was available via nipples all the times. Hens were exposed to a 17:7 light:dark cycle.

Sample collection and analytical procedure: Feed samples collected monthly were analyzed for dry matter, crude protein, crude fiber and ash contents according to procedures outlined by Association of Official Analytical Chemists (AOAC, 1990). Metabolizable energy, Ca and P contents of the experimental diets were calculated from tabular values of feedstuffs for chickens reported by Jurgens (1996). Feed intake and egg production were measured daily. Two eggs were collected bi-weekly from each cage. After storing for 24 hours at room temperature, they were weighed. Body weights (BW) were measured at the beginning and the end of the experiment. Feed conversion efficiency was expressed as kilogram feed intake per kilogram egg production. About 3 ml of blood samples were collected from two hens in each cage into additive-free vacutainers at the end of the experimental period for metabolic profile. Serum was obtained following centrifugation at 3000 g for 15 min at 20°C. Aliquots were kept at -20°C until laboratory analyses for concentrations of glucose, triglyceride, cholesterol, very low-density lipoprotein, total protein and albumin using commercial kits (DDS®, Diasis Diagnostic Systems Co., Istanbul, Turkey).

To assess egg quality parameters, two eggs were randomly collected from each cage every 4 weeks. Egg quality parameters were calculated using following formulas and methods as summarized by Ergün et al. (1987): shape index (%) = (egg width, cm/egg length, cm)2/100; shell strength (kg cm$^{-2}$) was determined by using machine with the spiral pressure system, shell thickness (mm 10$^{-5}$) was determined in 3 different parts by using micrometer; albumen index (%) = (albumen height, mm/average of albumen length, mm and

Materials and Methods

Animals, diets, and management: The Research Animal Ethic Committee of Atatürk University approved this experimental protocol. One hundred and forty four Lohman layers, weighing 1.53 kg at age of 30 weeks with uniformity of 92% (the number of hens weighing between 0.9-1.1% of the mean BW) were selected from the University Research Farm. Hens were blocked according to the location of cages (48x45x45 cm, width x depth x height). After one week of the adaptation period, hens were assigned randomly to receive corn-soybean diets containing 0, 1, or 2 gram per kilogram enzyme supplement (Farmazyme 2010™, Farmavet, Istanbul, Turkey). Each experimental group was replicated in 12 cages, each containing 4 hens.

The experimental diets (Table 1) were formulated to be isocaloric and isonitrogenous and met the NRC nutrient recommendations (NRC, 1994). The enzyme supplement contained fungal xylanase, fungal β-glucanase, α-amylase, pectinase, β-glucanase, endo-β-glucanase, pentosanase, pectinase and hemicellulase and it was added into the experimental diets at the expense of wheat bran. The diets contained an average of 89.8% dry matter and 2787 kcal/kg metabolizable energy, 17.9% crude protein, 3.3% crude fiber, 12.6% ash, 3.46% Ca and 0.61% P.

During the experimental period (from week 30 to 46), hens were fed ad libitum once daily at 08:30 hours and water was available via nipples all the times. Hens were exposed to a 17:7 light:dark cycle.

Sample collection and analytical procedure: Feed samples collected monthly were analyzed for dry matter, crude protein, crude fiber and ash contents according to procedures outlined by Association of Official Analytical Chemists (AOAC, 1990). Metabolizable energy, Ca and P contents of the experimental diets were calculated from tabular values of feedstuffs for chickens reported by Jurgens (1996). Feed intake and egg production were measured daily. Two eggs were collected bi-weekly from each cage. After storing for 24 hours at room temperature, they were weighed. Body weights (BW) were measured at the beginning and the end of the experiment. Feed conversion efficiency was expressed as kilogram feed intake per kilogram egg production. About 3 ml of blood samples were collected from two hens in each cage into additive-free vacutainers at the end of the experimental period for metabolic profile. Serum was obtained following centrifugation at 3000 g for 15 min at 20°C. Aliquots were kept at -20°C until laboratory analyses for concentrations of glucose, triglyceride, cholesterol, very low-density lipoprotein, total protein and albumin using commercial kits (DDS®, Diasis Diagnostic Systems Co., Istanbul, Turkey).

To assess egg quality parameters, two eggs were randomly collected from each cage every 4 weeks. Egg quality parameters were calculated using following formulas and methods as summarized by Ergün et al. (1987): shape index (%) = (egg width, cm/egg length, cm)2/100; shell strength (kg cm$^{-2}$) was determined by using machine with the spiral pressure system, shell thickness (mm 10$^{-5}$) was determined in 3 different parts by using micrometer; albumen index (%) = (albumen height, mm/average of albumen length, mm and
Table 2: The effects of enzyme supplementation on laying performance of hens during the peak period

<table>
<thead>
<tr>
<th>Parameter</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>SEM</th>
<th>C vs. E</th>
<th>L</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial BW, kg</td>
<td>1.54</td>
<td>1.52</td>
<td>1.52</td>
<td>0.02</td>
<td>0.28</td>
<td>0.40</td>
<td>0.51</td>
</tr>
<tr>
<td>Final BW, kg</td>
<td>1.61</td>
<td>1.59</td>
<td>1.59</td>
<td>0.03</td>
<td>0.48</td>
<td>0.56</td>
<td>0.72</td>
</tr>
<tr>
<td>BW change, %³⁵</td>
<td>-4.57</td>
<td>-4.80</td>
<td>-4.52</td>
<td>1.76</td>
<td>0.96</td>
<td>0.99</td>
<td>0.91</td>
</tr>
<tr>
<td>Egg yield, %⁶</td>
<td>88.0</td>
<td>88.9</td>
<td>88.9</td>
<td>0.9</td>
<td>0.41</td>
<td>0.48</td>
<td>0.68</td>
</tr>
<tr>
<td>Feed intake, g⁴</td>
<td>131.5</td>
<td>122.9</td>
<td>125.6</td>
<td>1.7</td>
<td>0.001</td>
<td>0.02</td>
<td>0.007</td>
</tr>
<tr>
<td>Egg weight, g⁴</td>
<td>60.3</td>
<td>60.1</td>
<td>60.5</td>
<td>0.3</td>
<td>0.94</td>
<td>0.70</td>
<td>0.41</td>
</tr>
<tr>
<td>FCR⁴,⁵</td>
<td>2.50</td>
<td>2.34</td>
<td>2.36</td>
<td>0.04</td>
<td>0.007</td>
<td>0.03</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Least square means. C vs. E = control vs. multi-enzyme supplementation; L = linear effect of multi-enzyme supplementation; Q: quadratic effect of multi-enzyme supplementation. BW change = (initial BW-final BW)*100/initial BW. Time effect (P < 0.0001). FCR = feed conversion ratio (feed intake:egg yield, kg/kg).

Table 3: The effects of enzyme supplementation on metabolic profiles of hens during the peak period

<table>
<thead>
<tr>
<th>Parameter</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>SEM</th>
<th>C vs. E</th>
<th>L</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amylase, U/L</td>
<td>340.0</td>
<td>430.0</td>
<td>364.0</td>
<td>42.4</td>
<td>0.29</td>
<td>0.70</td>
<td>0.15</td>
</tr>
<tr>
<td>Glucose, mg/dL</td>
<td>238.2</td>
<td>233.2</td>
<td>255.7</td>
<td>7.7</td>
<td>0.56</td>
<td>0.13</td>
<td>0.17</td>
</tr>
<tr>
<td>Triglyceride, mg/dL</td>
<td>924.2</td>
<td>955.8</td>
<td>920.2</td>
<td>12.0</td>
<td>0.30</td>
<td>0.82</td>
<td>0.09</td>
</tr>
<tr>
<td>Cholesterol, mg/dL</td>
<td>131.0</td>
<td>158.5</td>
<td>130.7</td>
<td>21.6</td>
<td>0.61</td>
<td>0.99</td>
<td>0.31</td>
</tr>
<tr>
<td>HDL-C, mg/dL</td>
<td>44.0</td>
<td>48.0</td>
<td>45.5</td>
<td>6.4</td>
<td>0.72</td>
<td>0.87</td>
<td>0.68</td>
</tr>
<tr>
<td>VLDL, mg/dL</td>
<td>184.8</td>
<td>179.9</td>
<td>184.3</td>
<td>2.4</td>
<td>0.32</td>
<td>0.88</td>
<td>0.11</td>
</tr>
<tr>
<td>Total protein, mg/dL</td>
<td>4.92</td>
<td>4.55</td>
<td>5.23</td>
<td>0.23</td>
<td>0.94</td>
<td>0.35</td>
<td>0.09</td>
</tr>
<tr>
<td>Albumin, mg/dL</td>
<td>1.77</td>
<td>1.55</td>
<td>1.88</td>
<td>0.09</td>
<td>0.71</td>
<td>0.38</td>
<td>0.03</td>
</tr>
<tr>
<td>Globulin, mg/dL</td>
<td>3.15</td>
<td>3.00</td>
<td>3.35</td>
<td>0.19</td>
<td>0.91</td>
<td>0.42</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Least square means. C vs. E = control vs. enzyme supplementation; L = linear effect of enzyme supplementation; Q: quadratic effect of enzyme supplementation.

albumen width, mm)*100; yolk index (%) = (yolk height, mm/yolk diameter, mm)*100; yolk color was determined by using commercially available yolk color fan according to the CIE standard colorimetric system (Yolk Colour Fan, the CIE standard colorimetric system, F. Hoffman-La Roche Ltd., Basel, Switzerland) and Haugh unit = 100*log(AH + 7.57-1.7*EW⁰.²⁷), where AH = albumen height, mm and EW = egg weight, g.

Statistics: The experimental diets were allocated in a complete randomized block design. The cage location (3-tier facing either window or corridor) was considered as a blocking factor. One-way ANOVA was employed using the Mixed Procedure as repeated measures with time being subplot (SAS, 1998). The linear model to test the effects of the experimental diets on laying performance, metabolic profile and egg quality parameters was as follows: Yᵢⱼᵏ = μ + Bᵢ + TRTⱼ + Tᵏ + (TRT*T)ᵢⱼᵏ + εᵢⱼᵏ, where Yᵢⱼᵏ = response variable, μ = population mean, Bᵢ = block (i = 1 cage at lower level by corridor side to 6 cage at upper level by window side), TRTⱼ = experimental diet (j = 0 to 2 level of the multi-enzyme supplement, Tᵏ = time (k = d, wk, or mo relative to initiation of the experiment), (TRT*T)ᵢⱼᵏ = iⱼᵏ level of the multi-enzyme supplement by jᵏ time interaction and εᵢⱼᵏ = experimental error. Because of lacking significant effect on response variables, diet by time interaction effect was omitted from the linear model. The time effect was also omitted from the linear model for statistical analyses of metabolic profiles because blood samples were obtained only at the end of the experimental period. Orthogonal (0 vs. average of 1 and 2 g/kg the multi-enzyme supplement) and polynomial contrast (linear and quadratic effect of increasing level of the multi-enzyme supplement) options were computed to evaluate the nature of responses to increasing level of the multi-enzyme supplement. Statistical significance was declared at P < 0.05.

Results
Laying performance: Table 2 summarizes the effect of multi-enzyme supplementation on laying performance parameters. Body weights prior to and after the experiment did not differ across the experimental diets. Regardless of the dietary treatments, all hens gained 4.3% weight relative to initial BW. Neither hen-day egg production nor egg weight responded to the experimental diets. Both parameters, however, changed during the experimental period (time effect, P < 0.0001 for both); the mean values were 84.5, 90.6, 91.5 and 92.4% for hen-day egg production and 60.3, 59.2, 61.3 and 62.3 g for egg weight on month 1, 2, 3 and 4 relative to initiation of the experiment. Hens fed the control diet consumed more feed than hens fed the multi-enzyme supplemented diets (131.5 vs. 124.2 g, P < 0.001). In response to increasing level of multi-enzyme supplementation, feed intake quadratically decreased (P < 0.007). Moreover, feed intake fluctuated over time; the
mean feed intake was 118.9, 115.1, 126.5 and 122.8 g on month 1, 2, 3 and 4 relative to initiation of the experiment. Similarly, feed conversion for hens fed the control diet was worse than for hens fed the multi-enzyme supplemented diets (2.50 vs. 2.35, P < 0.007). Feed conversion ratio linearly decreased with increasing level of multi-enzyme supplementation (P < 0.03). As the experiment advanced, FCR changed (P < 0.001); the mean FCR values were 2.34, 2.18, 2.27 and 2.14 on month 1, 2, 3 and 4 relative to initiation of the experiment.

Metabolic profile: The changes in metabolic parameters in response to the experimental diets are presented in Table 3. There was neither orthogonal nor polynomial effect of multi-enzyme supplementation on amylase activity and blood metabolites, except for serum albumin. As level of multi-enzyme supplementation increased, serum albumin concentration quadratically decreased.

Egg quality: As can be seen from Table 4, except for yolk index, none of the egg quality parameters was affected by the dietary treatments. Yolk index for hens fed the control diet was lower than hens fed the multi-enzyme supplemented diets (42.1 vs. 43.2%, P < 0.03) and it decreased linearly with increasing level of supplemental multi-enzyme (P < 0.02). Except for eggshell thickness, other egg quality parameters changed as the experiment continued. On month 1, 2, 3 and 4 relative to initiation of the experiment, the mean values were 75.6, 75.5, 74.8 and 74.1% for shape index (P < 0.01), 3.03, 2.34, 2.67 and 2.72 kg/cm² for eggshell strength (P < 0.02), 10.1, 11.3, 10.7 and 10.1 for yolk color (P < 0.0001), 43.5, 41.0, 43.5 and 43.4% for yolk index (P < 0.0001), 9.7, 8.5, 8.9 and 9.0% for albumen index (P < 0.01) and 85.8, 81.8, 83.8 and 83.2 for Haugh unit (P < 0.05), respectively.

Discussion
Enzymes are substrate-specific and play a role in cleaving linkages in NPS to increase nutrient availability from cereal grains for digestion and subsequent absorption. The adverse effects of NPS on utilization of nutrients and nutrient partitioning seem to depend on the amount consumed (Broz, 1993). Each kilogram of barley, rye and wheat contain 30-60 g (1-3),(1-4)-$-glucan, 100 g arabinoxylan (1-4)-(1-3)$-xylan with repeated unit of arabinose and 50-80 g pentosans (1-4)-$-xylan with repeated unit of xylose), respectively (Choct and Annison, 1992b). Al Bustany and Elwinger (1988) added $-glucanase into diets containing barley, oats, wheat, or unprocessed rapeseed and reported no benefit from addition of enzyme, regardless of grain. Supplementation of a multi-enzyme (1 g/kg) to diet in which barley was replaced with oats up to 100% improved apparent nutrient digestibility and feed conversion in laying hens, despite a dramatic increase in dietary fiber content (Aimonen and Näsä, 1991). However, positive effects of a mixture of $-glucanase and pentosonase (0.2 and 0.4 g/kg) supplementation in the diets of chicks containing different cereal grains were not observed (Brenes et al., 1993b). Jaroni et al. (1999) also reported no effect of multi-enzyme supplementation in late producing hens. A multi-enzyme complex mixture (0.5 g/kg) including amylases, cellulases, $-glucosidas, lipases and proteases failed to alleviate depression in egg production of hens fed barley-based diets (Ben Abdeljelil and Arbaoui, 1994). Effects of enzyme supplementation on laying performance of hens fed legume seed-based diets are controversial, but not soybean-based diets. It was shown that a multi-enzyme mixture (fungal $-glucanase, hemicellulase, pectinase, endoglucanase, protease and galactosidase) alleviated the adverse effects of alkaloids and toxic compounds of lupines on growth performance (Brenes et al., 1993a). Multi-enzyme supplementation improved performance (FCR) when chickens fed diet containing up to 15% faba beans (Viveros et al., 1993), but not when those fed lupines (Annison et al., 1996). Marsman et al. (1997) suggested that improvement in the nutritional value of soybeans could be achieved with protease and carbohydrate enzyme supplementation. To improve the utilization of soybean meal, Wu et al. (2005) supplemented diets with $-mannanase and reported that despite an increase in egg production, feed intake and egg weight did not change. In the present study, NPS content of feedstuffs was not measured and enzyme supplementation positively affected only feed intake and feed conversion (Table 2), which could be attributed to enhanced nutrient utilization. Multi-enzyme supplementation was shown to increase ileal digestibility of soybean meal (Douglas et al., 2000; Zanella et al. (1999) and corn (Wyatt et al., 1999; Zanella et al., 1999). In another experiment, a mixture of fungal $-glucanase and xylanase supplementation up to 0.25 mg per kilogram was shown to increase egg production and nutrient availability and decrease intestinal viscosity in laying hens, without altering feed intake (Lazaro et al., 2003). Moreover, Mathlouthi et al. (2003) compared the effect of xylanase (560 IU) and $-glucanase (2800 IU) in laying hens fed either wheat-barley or corn-soybean meal based diets. Enzyme supplementation did not affect egg production and egg weight, but improved feed conversion (kilogram feed intake per dozen egg production) in hens fed corn-soybean meal based diet and decreased intestinal viscosity. In a similar experiment, Jackson et al. (1999) evaluated the effect of $-mannanase supplementation (110 IU) on laying performance of hens fed corn-soybean meal based diets providing two different energy levels and reported that $-mannanase supplementation increased egg production and egg weight regardless of the energy level during peak and late-production period. In a 2x2 factorial arrangement of protein (192 vs. 227
Table 4: The effects of enzyme supplementation on egg quality of hens during the peak period

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Level of enzyme, g/kg</th>
<th>SEM</th>
<th>C vs. E</th>
<th>L</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shape index, %</td>
<td>74.8</td>
<td>74.8</td>
<td>75.4</td>
<td>0.3</td>
<td>0.50</td>
</tr>
<tr>
<td>Shell strength, kg cm²⁻¹</td>
<td>2.70</td>
<td>2.55</td>
<td>2.80</td>
<td>0.13</td>
<td>0.93</td>
</tr>
<tr>
<td>Shell thickness, mm 10⁻²</td>
<td>0.391</td>
<td>0.387</td>
<td>0.388</td>
<td>0.004</td>
<td>0.49</td>
</tr>
<tr>
<td>Yolk colour</td>
<td>10.7</td>
<td>10.6</td>
<td>10.5</td>
<td>0.2</td>
<td>0.45</td>
</tr>
<tr>
<td>Yolk index, %</td>
<td>42.1</td>
<td>43.1</td>
<td>43.3</td>
<td>0.4</td>
<td>0.03</td>
</tr>
<tr>
<td>Albumen index, %</td>
<td>8.9</td>
<td>9.2</td>
<td>9.0</td>
<td>0.2</td>
<td>0.52</td>
</tr>
<tr>
<td>Haugh unit</td>
<td>83.3</td>
<td>84.4</td>
<td>83.3</td>
<td>2.4</td>
<td>0.63</td>
</tr>
</tbody>
</table>

1Least square means. 2C vs. E = control vs. multi-enzyme supplementation; L = linear effect of multi-enzyme supplementation; Q: quadratic effect of multi-enzyme supplementation. 3Time effect (P < 0.01). 4Time effect (P < 0.02). 5Time effect (P < 0.0001).

Except for feed intake and feed conversion, the multi-enzyme supplementation did not affect other laying performance parameters. Except for serum albumin and yolk index, the effect of multi-enzyme on metabolic profile and egg quality parameters was lacking. Decreased feed intake and improved feed conversion could be attributed to enhanced utilization of nutrients. In consideration with cost analysis, supplementation of multi-enzyme may allow profitable egg production.

References

