Performance of Laying Hens Fed Varying Dietary Levels of Bambara (Voandzeia subterrenea Thouars) Offals

A.E. Onyimonyi and S.O.C. Ugwu
Department of Animal Science, University of Nigeria, Nsukka, Nigeria

Abstract: A feeding trial was conducted to evaluate the performance of laying hens fed varying dietary levels of Toasted Bambara Offals (TBO). The TBO was included in the diet at five levels of 0, 5, 10, 15 and 20 percent. A total of ninety laying hens on their eight week of lay were used for the trial that lasted for 133 days. The ninety birds were randomly assigned to the five dietary levels (0, 5, 10, 15 and 20 percent) with 18 birds per levels. Each dietary level was further replicated four times in a completely randomized design. Results showed that egg weight (g), yolk weight (g) and albumen weight (g) were significantly (P<0.05) affected by treatments. Values of 61.38, 64.00, 64.67, 65.00 and 68.45 g was recorded as egg weights for birds on the 0, 5, 10, 15 and 20 percent diets respectively. Yolk weight was 16.53, 16.50, 16.43, 17.83 and 18.07 for 0, 5, 10, 15 and 20 percent diets respectively and albumen weight of 37.78, 39.51, 39.44, 39.82, 43.09 was also observed in that order. The cost of feed (x) significantly (P<0.05) decreased as level of TBO in the diets increased. Cost of feed consumed/bird (x) significantly decreased as level of TBO in the diets increased. Total eggs produced/bird followed the same trend. Profit recorded from sale of eggs was significantly (P<0.05) highest at the 10 percent level. A value of x 1139.81 was recorded for the 10 percent diet, as compared to x 1120.13; x 1126.96, x 1089.75 and x 1083.87 recorded for the control, 5, 15 and 20 percent diets respectively. The results of the present study showed that TBO can be fed at 10 percent to laying hens to replace substantial levels of the more costly maize and soyabean meal. This level of feeding will ensure optimum performance and economic benefit to the farmer.

Key words: Bambara offal, performance, laying hens

Introduction
Animal Nutritionist in Nigeria have over the past few decades been engaged in various researches towards finding cheaper alternative feed stuffs for poultry (Oladunjoye et al., 2005; Uchegbu et al., 2004; Onuh, 2005; Otokunefor and Olomu, 2000; Amaefule and Obioha, 1998; Okonkwo and Oketola, 1996; Longe, 1986 and Onwudike, 1986). The search has been prompted by the ever escalating cost of the conventional feedstuffs which has resulted in the increasing cost of poultry production and consequent increase in the cost of poultry products (Iyai, 2002). To counter this increase in the prices of conventional feedstuffs and produce poultry products at affordable prices, the use of agro-industrial by products in poultry feeding must be exploited in Nigeria. There is evidence in the literature that the use of agro-industrial products reduces the cost of feed as they attract little pricing (Onyimonyi, 2002; Onuh, 2005). One of such readily available agro-industrial by products in Nigeria is Bambara offal. Bambara offal is the ultimate discard from the milling of bambara nut. It has no direct feeding value for humans and in most places it is dumped indiscriminately thus causing environmental problems. Bambara nut is widely grown in Nigeria where annual production has progressively increased over the years due to increasing consumption.

The utilization of bambara offal in feeding poultry has not been fully investigated. Okeke (2002) reported that a 20 percent level of bambara offal in the diet of finishing broilers supported growth as the control diet. In another study, it was reported that the inclusion of 20 percent bambara offal in the diet of growing pullets improved performance (Onyimonyi and Onukwulor, 2003). Amaefule and Osuagwu (2005) showed that the performance of chicks fed diet containing 5 percent bambara offal did not differ significantly (p>0.05) from that of the control. Ekenyem and Onyeagoro (2006) reported that bambara offal could appreciably reduce cost of broiler chicken production and could be included up to 15 percent in the diets.

The present study was conducted to evaluate the performance of laying birds fed varying dietary levels of bambara offals.

Materials and Methods
Location and duration of study: The experiment was conducted at the Poultry Research Unit of the Department of Animal Science, University of Nigeria, Nsukka. The study lasted for nineteen weeks (ie. From the 8th week of lay to the 27th week of lay).

Processing of the material: Bambara offals were purchased from processing plants at Nsukka Town. They were toasted over fire in aluminium pan for about
15 min during which period the material were stirred steadily with wooden stick to ensure uniform heating. The toasted offal were spread on a clean floor to cool.

**Experimental birds and management:** A total of ninety hens at their eighth week of lay were randomly selected from a flock of one hundred and twenty birds. They were housed individually in a battery cage. Water was provided *ad libitum* and feed was provided at the rate of 120g/hen/day. Routine medication and vaccination typical of laying hens were strictly followed.

**Experimental design:** The design used was a Completely Randomized Design (CRD) with the following model

\[ X_{ij} = \mu + T_i + e_{ijk} \]

Where:
- \( X_{ij} \) = observation on a parameter eg. the jth egg weight of a hen receiving the ith diet.
- \( T_i \) = Treatment effect ie. the effect of the ith diet
- \( e_{ijk} \) = Random error of the kth observation in the ij sub-group.
- \( \mu \) = Population mean

The ninety birds were randomly allotted to five dietary treatments ie. 0 (control), 5, 10, 15 and 20 percent levels of toasted bambara offal (Table 1). Each treatment was replicated four times with four birds per replicate.

**Measurement of relevant parameters:** The daily feed intake of each replicate was determined by the difference between feed given in a day and the left over in the following morning. Record was kept of the number of eggs produced per bird on daily basis. The measurement of external and internal egg characteristics were done using the methods of Ayanwale et al., 2006.

**Statistical analysis:** Data collected were processed and analyzed according to the procedure as outlined by Steel and Torrie (1980) using a Statsgraphic Computer Package. Significantly different means were separated by the methods of Duncan’s New Multiple Range Test (Duncan, 1955) in the same package.

**Analytical techniques:** The test material (Toasted bambara offal) was analyzed for its proximate composition using the method of AOAC (1990) see Table 2.

**Results and Discussion**
Table 3 shows the effect of treatments on the egg quality characteristics of the hens. Results show that the effect of treatment on egg weight (g), yolk weight (g) and albumen weight were significantly different (P<0.05). Egg weight increased as the inclusion level of Toasted Bambara Offal (TBO) in the diets increased. Birds on the control (0% TBO) and 5% diets did not differ in their egg weight (p>0.05). However their values differed significantly from those observed for birds on the 10, 15 and 20% diets (P<0.05). Egg size is a function of so many factors, notably; quality and quantity of feed, strain of the birds, stage of lay and management system. In the instant case, it seems there is a factor that increases egg weight as level of TBO in the diets increased. This may be associated with the enhanced nutrient profile of the diets as the level of TBO in the diet increased. It appears that the level of lysine increased with increasing level of TBO in the diets.

There is evidence in the literature that each 0.1 unit of extra lysine increased egg weight by 1.16 g. Further work may need to be carried out to verify this claim. The response of birds on the 10, 15 and 20 percent TBO in producing significantly bigger eggs could be attributed to the high protein content of the diets. This agrees with the report of Scott et al. (1976) that egg weight or size are controlled by the amount of protein in the feed. The implication of the egg size to consumers is enormous. Egg size has been reported as one of the most important factors that determine consumer choice of eggs. Consumers are not so much concerned with other measures of egg quality as they are with size of the egg and assurance of freshness. Egg size ranked highest among traders in determining the eggs to purchase (Iposu et al., 2000). Results further revealed that the yolk and albumen weights were significantly affected by treatments. The trend is that these parameters increased with increasing levels of TBO in the diets. Birds on the higher level of TBO inclusion (20% diet) had the highest significant value (P<0.05).
than the others. Egg yolk comprises 30 to 33 percent of the total egg weight, whereas the albumen (White) is approximately 60% of the total egg weight. It is thus expected that these values will increase with increasing egg weight. This is in line with the view of Arkbar et al. (1983) that increased concentration of dietary protein resulted in the increased in yolk weight and the population of yolk in a group of hens producing larger eggs. Another important observation in this study is the fact that the inclusion of TBO in the diets did not have any significant effects (p>0.05) on the shell thickness of eggs produced by hens on the various treatments. The shell thickness recorded for the treatments is above the minimal requirement. It is estimated that a shell thickness of 0.33 mm is needed if the egg is to have a more than 50 percent chance of moving through normal market handling without breaking (Stadelman, 1997).

The economic efficiency of feeding toasted bambara offal to the birds is presented in Table 4. Cost/kg of feed decreased significantly (P<0.05) as level of TBO in the diet increased. This decrease could be attributed to the reduced cost/kg of feed earlier observed as level of TBO in the diet increased. The total egg number produced/bird decreased as level of TBO increased from 0 to 20 percent. The control compared to values obtained for birds on the 15 and 20 percent diets. Profit showed a progressive increase up to the 10 percent level of TBO diet where it peaked and subsequently dropped from the 15 percent diet. The birds on the 10 percent diet had significantly higher

### Table 3: The Effect of Varying Dietary Levels of TBO on Egg Quality Characteristics

<table>
<thead>
<tr>
<th>Parameters</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg weight (g)</td>
<td>61.39a</td>
<td>64.00a</td>
<td>64.67a</td>
<td>65.00a</td>
<td>68.45a</td>
<td>1.014</td>
</tr>
<tr>
<td>Egg length (cm)</td>
<td>5.50</td>
<td>5.53</td>
<td>5.27</td>
<td>5.23</td>
<td>5.35</td>
<td>0.011</td>
</tr>
<tr>
<td>Egg width (cm)</td>
<td>3.00</td>
<td>2.80</td>
<td>3.23</td>
<td>2.97</td>
<td>3.40</td>
<td>2.024</td>
</tr>
<tr>
<td>Shape index</td>
<td>0.54</td>
<td>0.51</td>
<td>0.51</td>
<td>0.57</td>
<td>0.62</td>
<td>0.018</td>
</tr>
<tr>
<td>Shell weight (g)</td>
<td>6.54</td>
<td>6.40</td>
<td>6.27</td>
<td>6.30</td>
<td>6.29</td>
<td>0.015</td>
</tr>
<tr>
<td>Shell thickness (mm)</td>
<td>0.60</td>
<td>0.59</td>
<td>0.64</td>
<td>0.65</td>
<td>0.67</td>
<td>0.027</td>
</tr>
</tbody>
</table>

### Table 4: Economic Efficiency of Feeding TBO to Laying Hens

<table>
<thead>
<tr>
<th>Parameters</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost/kg of feed (x)</td>
<td>43.28b</td>
<td>41.74b</td>
<td>39.91b</td>
<td>37.50b</td>
<td>36.11b</td>
<td>0.406</td>
</tr>
<tr>
<td>Total feed intake/bird</td>
<td>13.30</td>
<td>13.39</td>
<td>13.43</td>
<td>13.50</td>
<td>13.63</td>
<td>0.083</td>
</tr>
<tr>
<td>Cost of feed consumed/bird</td>
<td>575.62</td>
<td>558.89</td>
<td>535.99</td>
<td>506.25</td>
<td>492.18</td>
<td>1.397</td>
</tr>
<tr>
<td>Total egg produced/bird</td>
<td>113.05</td>
<td>112.39</td>
<td>111.72</td>
<td>106.4</td>
<td>105.07</td>
<td>0.455</td>
</tr>
<tr>
<td>Revenue from egg (x)</td>
<td>1695.75</td>
<td>1685.85</td>
<td>1675.80</td>
<td>15.00</td>
<td>1596.05</td>
<td>1.666</td>
</tr>
<tr>
<td>Profit (x)</td>
<td>1120.13</td>
<td>1126.96</td>
<td>1139.81</td>
<td>1089.75</td>
<td>1083.87</td>
<td>1.164</td>
</tr>
</tbody>
</table>

(a)Row means with different superscript are significantly different (P<0.05), SEM: standard error of the mean

(1) Calculated from prevailing market prices of the feedstuffs in Nsukka town as at February, 2007 (maize, x 35/kg; soyabean meal, x 64/kg; Bambara offal x 10/kg; palm kernel cake, N9/kg; wheat offal, x 20/kg; fish meal, x 200/kg, Oyster shell, x 20/kg; Bone meal, x 25/kg; L-Lysine, x 600/kg; DL-Methionine, x 700/kg; NaCl, x 20/kg; Vitamin mineral premix, x 400/kg). Cumulative feed intake/bird for the 133 days the study lasted. (a) Cost/kg feed multiplied by the total feed intake/bird. (b) Total number of egg laid by a hen for the 133 days the study lasted. (c) Total number of eggs multiplied by x 15 (The prevailing market price per egg was x 15). (d) Revenue from egg minus-cost of feed consumed/bird (other costs were assumed to be constant for all the treatments).
return on investment than the others. The observed highest profit at the 10 percent level of inclusion of TBO is suggestive that laying birds can tolerate this level of TBO for optimum productive and economic efficiency.

**Conclusion:** The observed result in this study showed that incorporating 10 percent of toasted bambara offal in the diets of laying hens could improved laying performance at cheaper cost, thus enhancing better returns to the farmers.

**References**


