The Effect of Egg-Derived Antibody on Prevention of Avian Influenza Subtype H\textsubscript{9}N\textsubscript{2} in Layer Chicken

Shaban Rahimi1, Ehsan Salehifar1, Seyed Ali Ghorashi2, Jesse L. Grimes3 and Mohammad A. Kaimi Torshizi1

1Department of Poultry Science, Tarbiat Modares University, Tehran, Iran
2National Research Center for Genetic Engineering and Biotechnology of Iran, Tehran, Iran
3Department of Poultry Science, North Carolina State University, Raleigh NC, USA

Abstract: Avian Influenza (AI) is a contagious disease of poultry which caused by type A influenza virus. In the present outbreak of AI in Iran, the isolates (H\textsubscript{9}N\textsubscript{2}) were characterized as a low pathogenic form of the virus. Outbreaks due to H\textsubscript{9}N\textsubscript{2} subtypes have been reported in many countries. Because the common methods of control of outbreaks of AI may not be very effective to prevent and control of this disease, we decided to study the effect of egg derived antibody on reducing morbidity and spread of virus in a population of chickens by using so-called transmission experiments. Birds in test group (which received antibody in drinking water) had lower morbidity (p<0.05) and virus shedding compared to the control group. Our experiments demonstrate that administration of egg derived antibody (Ab) to chickens, not only may protect birds against this disease but is also an effective strategy to reduce transmission of AI virus. Therefore, egg derived specific antibody can be an attractive tool to prevent outbreaks of AI viruses in poultry, thereby achieving the aim of eliminating the source of human infections.

Key words: Avian influenza, antibody, egg, layer chicken

Introduction

Avian Influenza (AI) is caused by viruses of the influenza A genus of the family Orthomyxoviridae (Saif et al., 2003). At present sixteen hemagglutinin subtype (H1-H16) and nine neuraminidase subtype (N1-N9) of influenza A viruses have been recognized (Britta et al., 2005). Highly Pathogenic Avian Influenza (HPAI) is a viral disease of poultry caused by H5 or H7 AI A strains, with mortality that ranges up to 100%. The number of outbreaks in the last few years has been unprecedented: Hong Kong (Claas et al., 1998), Italy (Capua and Marangon, 2000), Chile (Suarez et al., 2004), the Netherlands (Stegeman et al., 2004), Canada (Bowes et al., 2004) and the continuing outbreaks in Southeast Asia (Li et al., 2004). Aside from causing havoc in poultry, it is becoming an increasing concern that certain HPAI viruses have the potential to directly cross the human-bird species barrier and may become a pandemic threat (Li et al., 2004; Fouchier et al., 2004). In the present outbreak of H\textsubscript{9}N\textsubscript{2} AI in Iran, the isolates were characterized in the laboratory as of low pathogenic (Vasfi Marandi and Bozorgmehrifard, 1999). While investigating the transfer of H5N1 influenza virus from chicken to man in the Hong Kong outbreak of 1997, it was revealed that high homology exists between the internal gene of H\textsubscript{9}N\textsubscript{2} and H6N1 and furthermore, these subtypes were found to exchange their internal genes and are therefore a potential source of new pathogenic influenza virus strains capable of infecting humans (Zhou et al., 1999).

To reduce the primary risk of human HPAI infection, it is crucial to prevent infection of poultry. Common methods to control outbreaks of HPAI are the depopulation of infected poultry, preemptive culling, biosecurity measures and vaccination. An ideal way to control AI should reduce the spread of virus between animals in a flock and, subsequently, the spread of virus between flocks to such an extent that a major outbreak will not occur. We studied the effect of egg derived antibody on the spread of virus in a population of chickens by using so-called transmission experiments. The purpose of this research, was 1) Production and isolation of avian influenza antibodies from the egg yolk, 2) to determine if infection by avian influenza can be prevented in layer chicken using oral egg-derived (Ab) recovered from hyper immunized chickens.

Materials and Methods

Experiment 1

Animals: Twenty Commercial Single Comb White Leghorn chickens were divided in two groups. Birds in the test group were hyper immunized with 0.5 mL of an inactivated oil emulsion vaccine (H\textsubscript{9}N\textsubscript{2}) for four times at interval of 2 weeks in pectoral muscle (the vaccine was obtained from Razi Research Institute of Vaccine and Serum Production in Iran). The control group also received 0.5 mL of sterile PBS as the same way.

Hi assay: The antibody was tested by Hemagglutination Inhibition test (HI) in serum and egg yolk in both groups.
Fig. 1: Average of avian influenza antibody (GMT) in serum and yolk

This assay was performed by standard methods (Swayne et al., 1988). Briefly, the test was performed in V-bottom 96-well micro titer plates with 4 hemagglutinating units of HN virus and 0.5% specific pathogen-free chicken erythrocytes. Data was analyzed by student t-test and Fisher’s exact test.

Antibody preparation: Eggs from both groups were collected 2 weeks after the first immunization. Then eggs were broken out and the yolk was collected in an equal volume of PBS. This mixture was mixed in a food blender until a uniform product was produced (approximately 3 min at high speed). The resulting mixture was centrifuged at 1.800×g for 15 min in a refrigerated centrifuge at 4°C. The superficial lipid layer was removed and the resulting supernatant was collected and stored at 4°C until it was used as the antibody source. The sediment was discarded (Fulton et al., 2002; Carlander et al., 2000). Immunoglobulin Y obtained from immunized hens was used for treatment.

Experiment 2
Animals: Fifty day old Specific Pathogen Free (SPF) white Lohmann chickens were divided in two groups and were housed in a high containment unit under biosafety level 3 conditions for 45 days. Strict biosecurity and precautions were taken not to allow the virus outside of the laboratory. Birds in the test group received 15 mL of Ab mixed per 3.84 L of drinking water beginning on day 17 and continuously until the end of the experiment. Birds in control group did not received any antibody (according to procedure of Fulton et al., 2002). Both groups were inoculated intranasally with 0.1 mL of live virus with 10^7 egg-infectious dose (EID50) per mL on day 22. For the AI virus challenge, chickens were placed in negative pressure ventilated with HEPA-filtered air and provided with continuous lighting. Water and feed were provided ad libitum.

ELISA assay: Serum was collected from each bird on the day of challenge and in days 38, 42 and 45 post challenge. The antibody was tested by ELISA test. All birds were monitored twice daily for clinical signs of illness.

Virus shedding: To investigate virus shedding, 8 birds were separated randomly at day 45. Cloacal swabs were taken for virus isolation and titration in 10 day embryonating SPF chicken eggs. Swabs were put in 2 mL of 2.95% tryptose phosphate buffer with 5 to 10^5 IU of penicillin-sodium and 5 mg of streptomycin per mL. The swabs were stored at-70°C until analyzed. Three embryonated chicken eggs incubated for 9 days were inoculated with 0.2 mL per egg. After 72 h, the allantoic fluid was harvested. A Hemagglutination Assay (HA) was performed following standard procedures (Swayne et al., 1988).

Macroscopic lesions: The remaining birds were humanely euthanized by carbon dioxide asphyxiation and necropsied at the end of experiment. Gross lesions were recorded.

Results and Discussion
Experiment 1: Maximum titer of antibody in serum and egg yolks were detected in 14 and 35 days after the first immunization, respectively (Fig. 1). Levels of antibody in yolk were increased with levels of antibody in serum. Antibody level in yolk was higher than serum. There was a significant difference in levels of antibodies of yolk and serum between groups (p<0.05) (Table 1).

Experiment 2: No clinical signs or mortality via AI were observed in any of the birds in experiment 2. Titer of antibody in both groups were determined by ELISA test. Only three birds in the test group had a positive titer, though 21 birds in the control group had positive titer (Table 2). The results were analyzed by Fisher’s exact test. Birds in the test group had lower morbidity (p<0.05). Virus shedding was significantly decreased in the test group (p<0.05). In this study 7 birds in the test group had no virus shedding, though only 1 bird in the control group was negative (Table 3).

Egg derived antibody as a source of antibody has been used in many studies for therapeutics purpose. Maximum titer of antibody in egg yolks were detected in 42 days after the first immunization with hyper immunized leghorn hens by Salmonella enteritidis (Gurtler et al., 2004). With injection of Helicobacter pylori antigen in brown leghorn intramuscularly in femur maximum titer of antibody in egg yolk were detected in...
Table 1: Experiment 1. Average of avian influenza antibody (GMT) in serum and yolk

<table>
<thead>
<tr>
<th>Group</th>
<th>Average of Al antibody (GMT) in serum</th>
<th>Average of Al antibody (GMT) in yolk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>7.43±1.19°</td>
<td>8.37±1.34°</td>
</tr>
<tr>
<td>Treatment</td>
<td>9.37±1.57°</td>
<td>10.47±1.67°</td>
</tr>
</tbody>
</table>

Different lower case superscripts denote significant difference between treatments groups

Table 2: Experiment 2. The results from ELISA test in layer chicken

<table>
<thead>
<tr>
<th>Group</th>
<th>Number with positive titer</th>
<th>Number with negative titer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>21/22 (95.6%)</td>
<td>1/22 (4.5%)</td>
</tr>
<tr>
<td>Treatment</td>
<td>5/8 (62.5%)**</td>
<td>3/8 (37.5%)**</td>
</tr>
</tbody>
</table>

Different lower case superscripts denote significant difference between treatments groups

Table 3: Experiment 2. Attempted virus isolation from cloacal swabs

<table>
<thead>
<tr>
<th>Group</th>
<th>Birds excreting virus</th>
<th>Birds not excreting virus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>7/8 (87.5%)*</td>
<td>1/8 (12.5%)*</td>
</tr>
<tr>
<td>Treatment</td>
<td>1/8 (12.5%)*</td>
<td>7/8 (87.5%)*</td>
</tr>
</tbody>
</table>

Different lower case superscripts denote significant difference between treatments groups

42 days after the first immunization by ELISA test (Shin et al., 2002a). Maximum titer of antibody in serum and egg yolk were detected in 28 and 42 days after the first immunization, respectively, with injection antigens Pasteurella multocida, Boedetella bronchiseptica and Actunobacillus pleuropneumoniae in white leghorn in pectoral muscle (Shin et al., 2002b). The results from many studies indicate that in all studies, level of antibody in yolk is higher than serum. Factors such as SPF chicken or inbred chickens, kind of antigen, injection way, number of injection, adjuvant and the test for detection antibody have an important roles in the results obtained (Gurtler et al., 2004; Shin et al., 2002a; Shin et al., 2002b; Carlander et al., 2002; Coleman, 1996; Kruger, 2004; Narat, 2003). In all studies ELISA test was more sensitive than other methods to detect antibody.

Influenza is a zoonotic virus that occurs in lower animals and birds as well as in humans and can result in economic loss (Saif et al., 2003). Outbreaks due to H5N2 subtypes have been reported in Germany, Italy, Ireland, South Africa, USA, Korea, China, the Middle East, Saudi Arabia and Pakistan (Alexander, 2000; Banks et al., 2000). These outbreaks indicates that common methods to control outbreaks of AI such as depopulation of infected poultry, preemptive culling, biosecurity measures, and vaccination might not be very effective in prevention and control of AI. In the past, immunotherapy was carried out via the systemic or intravenous administration of specific antibodies, for such applications as a targeting agent for cancer diagnosis and therapy, the inactivation of toxic substances including drugs and passive immunotherapy for neoplastic or infectious diseases. However, there has been increasing interest in the oral administration of specific antibodies for localized treatment of infections in the gastrointestinal tract (Carlander et al., 2000; Reilly et al., 1997). The increase in antiviral-resistant virus, such as viral pathogens, has prompted much research into the oral administration of antibodies as an alternative to treat infections. Orally administered antibodies would provide the advantage of reduced cost and ease of administration, as well as the potential for localized treatment and prevention and reduce the spreading the pathogen (most important factor for widespread disease). Our experiments demonstrate that egg derived antibody not only protects chickens against disease but is also an effective strategy to reduce transmission. Specifically, with use of egg derived antibody, transmission of the virus is decreased, and a major outbreak may be prevented. The egg derived antibody could be an attractive tool to prevent outbreaks of AI viruses in poultry, thereby possibly contributing to the aim of eliminating the source of human infections.

References

Rahimi et al.: Egg Derived Antibody and Avian Influenza

