Wind-Borne Transmission of Infectious Laryngotracheitis Between Commercial Poultry Operations

Y.J. Johnson1*, N. Gedamu1, M.M. Colby1,2, M.S. Myint1, S.E. Steele1, M. Salem1 and N.L. Tablante1

1Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD 21801, USA
2American Academy for the Advancement of Science, Global Security Fellow Office of Science and Technology Policy, Executive Office of the President, Washington, DC 20502, USA
3University of Delaware, Department of Animal and Food Science, Newark Delaware 19717, USA
E-mail: Yjjohn38@uiuc.edu

Abstract: Infectious Laryngotracheitis (ILT) is an acute respiratory disease of poultry and causes significant economic losses due to increased mortality and decreased productivity. First described in 1925, ILT has been extensively studied, but little is known about the epidemiology of the disease. In the past 15 years, there have been severe ILT outbreaks in several poultry-producing states. The spread of ILT in outbreak situations is typically quite rapid, and then in an ever-widening arc around the initial case. The mechanism of this spread is not well understood, and many hypotheses are currently in existence. Several risk factors that have been identified are indicative of wind-borne transmission. A case-control study of 18 case and 122 control flocks was conducted. A GIS database of poultry operations and meteorological data from local weather stations were employed to analyze the risk of clinical ILT associated with prevailing wind patterns. Case farms were 9.9 times more likely located within the wind vector of a clinical ILT flock during the 14 day incubation period for ILT than control flocks (p<0.001). House orientation and proximity to a backyard flock or a commercial flock were not significantly associated with case status. The control-to-case flock distance was significantly greater than the case-to-case flock distance (p=0.03). House ventilation system, wind vector, and distance from another case flock were presented to a backward eliminating logistic regression model. Only wind vector variable was retained in the model. The point estimate for the odds ratio was 0.110 (95% confidence interval 0.038 - 0.322).

Key words: Infectious laryngotracheitis, epidemiology, geographic information systems, windborne,
risk of wind-borne ILT between commercial poultry flocks. The objective of this study is to quantify the risk associated with wind-borne transmission of infectious laryngotracheitis based on prevailing wind patterns during the 14-day incubation period.

Hypotheses: The following hypotheses were tested:

C Mean case-to-case farm distance is less than the mean case-to-control farm distance.
C Case farms are more likely to be located within the wind vectors of other case farms than control farms.
C Poultry houses on case farms are more likely to be oriented in a North-South direction than poultry houses on control farms.
C Poultry houses on case farms are more likely to have conventional ventilation systems than poultry houses on control farms.

Materials and Methods

A case control study was conducted using commercial poultry operations located within a 10-mile radius of the University of Delaware weather station in Georgetown, Delaware. An ILT case flock was defined as a commercial poultry flock in which:

C Diagnosis was confirmed via virus isolation or histopathology at the University of Delaware Laboratories in Georgetown or Newark Delaware.
C Diagnosis occurred between November 1, 1998 and November 1, 2001.
C The flock was not vaccinated for ILT.

There were 24 case flocks located within the study region that met the case definition. Control flocks were defined as commercial poultry flocks located within the study region with no reported clinical signs of ILT during the study period. There were 196 control flocks within the study region. The types of ventilation systems in use on the farms and the orientations of the poultry houses were recorded by visiting each farm. The orientation of the house was determined using a Garmin eTrex personal navigator (Garmin Corp. Olathe, Kansas).

Data on prevailing wind patterns for the study period were collected from the local weather station at the University of Delaware Research and Education Center, Georgetown, DE. The station is equipped with a Model 05103 RM Young wind monitor and a Model 21X data logger (Campbell Scientific Inc. Logan, Utah). The primary variables of wind speed and wind direction are retrieved from a low threshold press ion air velocity sensor employing a fast response helicoid propeller that responds to a component of airflow that is parallel to the axis of rotation. This process measures horizontal wind speed and direction thereby closely approximating a cosine of a curve. There are three out puts that are retrieved from the weather station: mean horizontal wind speed, unit vector mean wind direction, and standard deviation of wind direction. The process instruction and algorithm used to produce these data complies with US Environmental Protection Agency guidelines for use with a straight-line Gaussian dispersion model known as the Industrial Source Complex Plume Rise Model Enhancement (Paine and Lew, 1997).

An ArcView (ESRI Inc. Redlands, CA) software script initially establishes a bearing point using the pre-projected latitude and longitude coordinates of a poultry farm. This location is used as a point of departure. The script will then read a list that contains date, wind speed and direction data. The program then generates vectors representing the wind pattern from the poultry farm during the dates of interest. These vectors will be used to determine a high-risk area around each case farm (Fig. 1). The number of case flocks and control flocks falling within these “high risk” areas were determined. A binary variable was then created to indicate whether or not the farm was located within a “high risk” area.

Statistical analysis: Data analyses were conducted with SAS Version 8.2 (SAS Institute, Inc. Cary NC). Chi-square, odds ratios and t-tests were calculated for categorical and continuous variables respectively. Logistic regression was used to model the relationship between the probability of clinical ILT and the risk factors of interest. The independent variables include: location within a high risk wind polygon, house orientation, house ventilation system, distance from a case farm, distance from nearest commercial poultry flock and distance from nearest backyard flock. Independent variables with a p < .08 were introduced into the full model. A backward eliminating approach was used for model building.

Results

There were a total of 24 case farms and 196 control farms located within the study region. A total of 80 farms were eliminated from the study due to missing data (6 case farms and 74 control farms). The study population consisted of 18 case farms and 122 control farms. Results of the univariate analyses are summarized in Tables 1 and 2. Proximity to the nearest backyard flock and commercial flock were not significantly different between case flocks and control flocks. The case-to-case flock distance was significantly less than the control-to-case flock distance. Flocks with tunnel ventilation were one-third as likely to be case flocks than those with conventional ventilation systems. House orientation was not significantly associated with case status.

Three variables met the criteria for presentation to the multivariate logistic regression model: distance to the nearest case farm in meters, tunnel ventilation system (0,1), and location within the wind vector of a case flock (0,1). The results of the logistic regression model are
Table 1: Univariate Analysis of Continuous Risk Factors

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>Case Flocks Mean (meters)</th>
<th>Control Flocks Mean (meters)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance to Nearest Backyard Flock</td>
<td>7662.78</td>
<td>3413.27</td>
<td>0.239</td>
</tr>
<tr>
<td>Distance to Nearest Case Flock**</td>
<td>3029.35</td>
<td>4774.92</td>
<td>0.031</td>
</tr>
<tr>
<td>Distance to Nearest Commercial Flock</td>
<td>2335.24</td>
<td>1855.60</td>
<td>0.542</td>
</tr>
</tbody>
</table>

*Null Hypothesis: Mean Distance for Case Flocks is less than the Mean Distance for Control Flocks. **Statistically significant at p<0.05 level.

Table 2: Univariate Analysis of Categorical Variables

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>Chi² (p-value)</th>
<th>Odds Ratio</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wind Vector*</td>
<td>22.99 (p<0.0001)</td>
<td>9.905</td>
<td>3.44, 28.53</td>
</tr>
<tr>
<td>Tunnel Ventilation System*</td>
<td>Fisher's Exact (p=0.038)</td>
<td>0.288</td>
<td>0.079, 1.047</td>
</tr>
<tr>
<td>North-South House Orientation</td>
<td>0.005(p=0.9424)</td>
<td>0.964</td>
<td>0.354, 2.624</td>
</tr>
</tbody>
</table>

*Statistically significant at p<0.05 level.

Table 3: Final Logistic Regression Model Results

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate</th>
<th>Standard Error</th>
<th>Wald Chi² (95% Confidence Interval)</th>
<th>Odds Ratio Point Estimate (95% Confidence Interval)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>-1.595</td>
<td>0.2734</td>
<td>34.060</td>
<td>0.110 (0.038, 0.322)</td>
<td>p<0.0001</td>
</tr>
<tr>
<td>Wind</td>
<td>-1.103</td>
<td>0.2734</td>
<td>16.278</td>
<td>0.110 (0.038, 0.322)</td>
<td>p<0.0001</td>
</tr>
</tbody>
</table>

The lack of an association between proximity to a backyard and clinical ILT is inconsistent with previous work by the authors (Johnson et al., 2004). However, the cluster of cases studied in this investigation is significantly different from the cluster of cases in the previous study. The previous cluster of ILT cases studied by the authors occurred between May and June 1998. The spring 1998 cluster were the first clinical cases in commercial poultry reported in the region since December 4, 1995 (Colby et al., 2001). Prior to the spring 1998 cluster of cases, commercial integrators were not routinely vaccinating broiler flocks against ILT. The series of cases that occurred between November 1998 and November 2001 were subsequent to a widespread ILT vaccination campaign in which several (but not all) flocks in the area were vaccinated against ILT. The relative importance of geographic and spatial risk factors can be expected to change in response to implementation of outbreak control measures such as intensified biosecurity, vehicle re-routing, and vaccination.

Lack of available data on which control flocks were vaccinated against ILT prohibited analysis of proximity to a vaccinated flock as a risk factor. Previous reports have cited proximity to a vaccinated flock as a risk factor for clinical ILT (Andreasen et al., 1989; Churchill, 1965; Hilbink et al., 1987; Samberg et al., 1971). This is a potentially important limitation of this study. The strength of the association between risk factors in question and clinical ILT may have been underestimated because some of the flocks exposed to the risk factor were not susceptible to clinical ILT because they had been vaccinated. If windborne transmission of ILT virus from vaccinated flocks poses a similar risk of spread as observed in this study from clinically infected flocks, vaccination of only a portion of the susceptible flocks in a geographic region may serve to enhance disease transmission to the unvaccinated flocks.

The multivariate model assesses the impact of each risk factor while holding the others constant. This allows us to evaluate the impact of wind vector while holding constant the impact of proximity to a case farm. While proximity to another case flock was a statistically significant risk factor, its importance is removed from the model when the variable of wind vector is also present.
Fig. 1: Wind vector patterns from 6 ILT clinical case flocks diagnosed, June 7 - June 15, 1999 in Sussex, County, Delaware. Large green dots represent case flocks with their diagnosis dates. Small blue dots represent ILT negative commercial poultry flocks. Red lines depict the patterns of prevailing wind patterns during the 14 day period following diagnosis of the ILT clinical case flocks.

The findings from this study demonstrate the capability of GIS databases in addressing health issues in intensive livestock and poultry production systems such as epidemiological research, disease surveillance, and planning and decision support systems. The use of real-time meteorological data to identify farms at high risk for wind-borne transmission of infectious disease can be adapted to other diseases such as Foot and Mouth Disease, Avian Influenza or Newcastle Disease.

References
Johnson et al.: Wind-borne ILT spread

